
Data aggregation

Dr. Jennifer (Jenny) Bryan
Department of Statistics and Michael Smith Laboratories
University of British Columbia

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

How to do <sthg> for various ‘chunks’ of your dataset

chunks are ... my recommendation

rows, columns, etc. of
matrices / arrays

apply()

groups induced by levels of
≥ 1 factor(s) -- vector aggregate()

groups induced by levels of
≥ 1 factor(s) -- data.frame plyr::ddply()

components of a list
(remember data.frames are lists!)

plyr::l*ply()

chunks are ... relevant functions

rows, columns, etc. of
matrices / arrays

apply()

components of a list
(remember data.frames are lists!)

sapply(),lapply()

groups induced by levels of
≥ 1 factor(s)

aggregate()
tapply()
by()
split() + [sl]apply()

How to do <sthg> for various ‘chunks’ of your dataset
 ... using only built-in functions, i.e. no plyr

chunks are ... my recommendation

rows, columns, etc. of
matrices / arrays

apply()

groups induced by levels of
≥ 1 factor(s) -- vector aggregate()

groups induced by levels of
≥ 1 factor(s) -- data.frame plyr::ddply()

components of a list
(remember data.frames are lists!)

plyr::l*ply()

chunks are ... my recommendation

rows, columns, etc. of
matrices / arrays

apply()

groups induced by levels of
≥ 1 factor(s) -- vector aggregate()

groups induced by levels of
≥ 1 factor(s) -- data.frame plyr::ddply()

components of a list
(remember data.frames are lists!)

plyr::l*ply()

chunks are ... my recommendation

rows, columns, etc. of
matrices / arrays

apply()

groups induced by levels of
≥ 1 factor(s) -- vector aggregate()

groups induced by levels of
≥ 1 factor(s) -- data.frame plyr::ddply()

components of a list
(remember data.frames are lists!)

plyr::l*ply()

The plyr package is what I advise long-term for data
aggregation.

http://plyr.had.co.nz

http://plyr.had.co.nz
http://plyr.had.co.nz

Hadley Wickham.
The split-apply-combine strategy for data analysis.
Journal of Statistical Software, vol. 40, no. 1, pp. 1–29, 2011.
http://www.jstatsoft.org/v40/i01/paper

JSS Journal of Statistical Software

April 2011, Volume 40, Issue 1. http://www.jstatsoft.org/

The Split-Apply-Combine Strategy for Data
Analysis

Hadley Wickham
Rice University

Abstract

Many data analysis problems involve the application of a split-apply-combine strategy,
where you break up a big problem into manageable pieces, operate on each piece inde-
pendently and then put all the pieces back together. This insight gives rise to a new R

package that allows you to smoothly apply this strategy, without having to worry about
the type of structure in which your data is stored.

The paper includes two case studies showing how these insights make it easier to work
with batting records for veteran baseball players and a large 3d array of spatio-temporal
ozone measurements.

Keywords: R, apply, split, data analysis.

1. Introduction

What do we do when we analyze data? What are common actions and what are common
mistakes? Given the importance of this activity in statistics, there is remarkably little research
on how data analysis happens. This paper attempts to remedy a very small part of that lack by
describing one common data analysis pattern: Split-apply-combine. You see the split-apply-
combine strategy whenever you break up a big problem into manageable pieces, operate on
each piece independently and then put all the pieces back together. This crops up in all stages
of an analysis:

During data preparation, when performing group-wise ranking, standardization, or nor-
malization, or in general when creating new variables that are most easily calculated on
a per-group basis.

When creating summaries for display or analysis, for example, when calculating marginal
means, or conditioning a table of counts by dividing out group sums.

http://www.jstatsoft.org/v40/i01/paper
http://www.jstatsoft.org/v40/i01/paper

split apply combine

Journal of Statistical Software 5

R> models <- dlply(ozonedf, .(lat, long), deseasf_df)

R> deseas <- ldply(models, resid)

dlply takes a data frame and returns a list, and ldply does the opposite: It takes a list and
returns a data frame. Compare this code to the code needed when the data was stored in an
array.

The following section describes the plyr functions in more detail. If your interest has been
whetted by this example, you might want to skip ahead to Section 5.2 to learn more about
this example and see some plots of the data before and after removing the seasonal e↵ects.

3. Usage

Table 2 lists the basic set of plyr functions. Each function is named according to the type of
input it accepts and the type of output it produces: a = array, d = data frame, l = list, and
_ means the output is discarded. The input type determines how the big data structure is
broken apart into small pieces, described in Section 3.1; and the output type determines how
the pieces are joined back together again, described in Section 3.2.

The e↵ects of the input and outputs types are orthogonal, so instead of having to learn all
12 functions individually, it is su�cient to learn the three types of input and the four types
of output. For this reason, we use the notation d*ply for functions with common input, a
complete row of Table 2, and *dply for functions with common output, a column of Table 2.

The functions have either two or three main arguments, depending on the type of input:

a*ply(.data, .margins, .fun, ..., .progress = "none")

d*ply(.data, .variables, .fun, ..., .progress = "none")

l*ply(.data, .fun, ..., .progress = "none")

The first argument is the .data which will be split up, processed and recombined. The second
argument, .variables or .margins, describes how to split up the input into pieces. The third
argument, .fun, is the processing function, and is applied to each piece in turn. All further
arguments are passed on to the processing function. If you omit .fun the individual pieces
will not be modified, but the entire data structure will be converted from one type to another.
The .progress argument controls display of a progress bar, and is described at the end of
Section 4.

Note that all arguments start with “.”. This prevents name clashes with the arguments of
the processing function, and helps to visually delineate arguments that control the repetition

XXXXXXXXXXXInput
Output

Array Data frame List Discarded

Array aaply adply alply a_ply

Data frame daply ddply dlply d_ply

List laply ldply llply l_ply

Table 2: The 12 key functions of plyr. Arrays include matrices and vectors as special cases.

Journal of Statistical Software 5

R> models <- dlply(ozonedf, .(lat, long), deseasf_df)

R> deseas <- ldply(models, resid)

dlply takes a data frame and returns a list, and ldply does the opposite: It takes a list and
returns a data frame. Compare this code to the code needed when the data was stored in an
array.

The following section describes the plyr functions in more detail. If your interest has been
whetted by this example, you might want to skip ahead to Section 5.2 to learn more about
this example and see some plots of the data before and after removing the seasonal e↵ects.

3. Usage

Table 2 lists the basic set of plyr functions. Each function is named according to the type of
input it accepts and the type of output it produces: a = array, d = data frame, l = list, and
_ means the output is discarded. The input type determines how the big data structure is
broken apart into small pieces, described in Section 3.1; and the output type determines how
the pieces are joined back together again, described in Section 3.2.

The e↵ects of the input and outputs types are orthogonal, so instead of having to learn all
12 functions individually, it is su�cient to learn the three types of input and the four types
of output. For this reason, we use the notation d*ply for functions with common input, a
complete row of Table 2, and *dply for functions with common output, a column of Table 2.

The functions have either two or three main arguments, depending on the type of input:

a*ply(.data, .margins, .fun, ..., .progress = "none")

d*ply(.data, .variables, .fun, ..., .progress = "none")

l*ply(.data, .fun, ..., .progress = "none")

The first argument is the .data which will be split up, processed and recombined. The second
argument, .variables or .margins, describes how to split up the input into pieces. The third
argument, .fun, is the processing function, and is applied to each piece in turn. All further
arguments are passed on to the processing function. If you omit .fun the individual pieces
will not be modified, but the entire data structure will be converted from one type to another.
The .progress argument controls display of a progress bar, and is described at the end of
Section 4.

Note that all arguments start with “.”. This prevents name clashes with the arguments of
the processing function, and helps to visually delineate arguments that control the repetition

XXXXXXXXXXXInput
Output

Array Data frame List Discarded

Array aaply adply alply a_ply

Data frame daply ddply dlply d_ply

List laply ldply llply l_ply

Table 2: The 12 key functions of plyr. Arrays include matrices and vectors as special cases.

ddply(.data, .variables, .fun = NULL)

apply this
function to
each chunk ...

Take this
data.frame ...

divide it into baby
data.frames, based
on this factor
and ...

... glue the results back together and
return as a data.frame

