Data aggregation

Dr. Jennifer (Jenny) Bryan Department of Statistics and Michael Smith Laboratories University of British Columbia

How to do <sthg> for various 'chunks' of your dataset

chunks are	my recommendation	
rows, columns, etc. of matrices / arrays	apply()	
groups induced by levels of ≥ I factor(s) vector	aggregate()	
groups induced by levels of ≥ I factor(s) data.frame	plyr::ddply()	
components of a list (remember data.frames are lists!)	plyr::l*ply()	

How to do <sthg> for various 'chunks' of your dataset ... using only built-in functions, i.e. no plyr

chunks are	relevant functions		
rows, columns, etc. of matrices / arrays	apply()		
components of a list (remember data.frames are lists!)	<pre>sapply(),lapply()</pre>		
groups induced by levels of ≥ 1 factor(s)	aggregate() tapply() by() split() + [sl]apply()		

chunks are	my recommendation	
rows, columns, etc. of matrices / arrays	apply()	
groups induced by levels of ≥ I factor(s) vector	aggregate()	
groups induced by levels of ≥ I factor(s) data.frame	plyr::ddply()	
components of a list (remember data.frames are lists!)	plyr::l*ply()	

chunks are	my recommendation	
rows, columns, etc. of matrices / arrays	apply()	
groups induced by levels of ≥ 1 factor(s) vector	aggregate()	
groups induced by levels of ≥ I factor(s) data.frame	<pre>plyr::ddply()</pre>	
components of a list (remember data.frames are lists!)	plyr::l*ply()	

chunks are	my recommendation	
rows, columns, etc. of matrices / arrays	apply()	
groups induced by levels of ≥ 1 factor(s) vector	aggregate()	
groups induced by levels of ≥ I factor(s) data.frame	<pre>plyr::ddply()</pre>	
components of a list (remember data.frames are lists!)	plyr::l*ply()	

The plyr package is what I advise long-term for data aggregation.

for the manipulatr mailing list:

labels that are maintained across all transformations

Considerable effort has been nut into making nur fast and memory efficient and in many

Hadley Wickham.

The split-apply-combine strategy for data analysis. Journal of Statistical Software, vol. 40, no. 1, pp. 1–29, 2011. <u>http://www.jstatsoft.org/v40/i01/paper</u>

The Split-Apply-Combine Strategy for Data Analysis

Hadley Wickham Rice University

Abstract

Many data analysis problems involve the application of a split-apply-combine strategy, where you break up a big problem into manageable pieces, operate on each piece independently and then put all the pieces back together. This insight gives rise to a new R package that allows you to smoothly apply this strategy, without having to worry about the type of structure in which your data is stored.

The paper includes two case studies showing how these insights make it easier to work with batting records for veteran baseball players and a large 3d array of spatio-temporal ozone measurements.

Keywords: R, apply, split, data analysis.

split apply combine

Output Input	Array	Data frame	List	Discarded
Array	aaply	adply	alply	a_ply
Data frame	daply	ddply	dlply	d_ply
List	laply	ldply	llply	l_ply

- a*ply(.data, .margins, .fun, ..., .progress = "none")
- d*ply(.data, .variables, .fun, ..., .progress = "none")
- l*ply(.data, .fun, ..., .progress = "none")

... glue the results back together and return as a data.frame